Local polynomials

Symmetric filters

We consider the kernel K

Asymmetric filters

Description

At the end of the period, the series is modelled as follows:

\[y = U \gamma + Z \delta + \epsilon, \: \epsilon \sim N\left(0, D\right)\]

Usually, $U$ and $Z$ are parts of the polynomial matrix $X$

Constraints on the asymmetric weights are imposed by the Matrix $U=\begin{pmatrix} U_p \ U_f \end{pmatrix}$:

\[U'_p v = U' w\]

The system should impose at least that the sum of the weights is equal to $1$ (which means that $U$ should contain the vector of ones).

The solution can be expressed as:

\[v=w_p + Lw_f +M w_f\] \[Lw_f =D_p^{-1} U_p\left(U_p'D_p^{-1}U_p \right)^{-1} U_f'w_f\] \[M w_f = RZ_p \delta \delta' \left( I+ Z_p' RZ_p \delta \delta'\right)^{-1} \left(Z_f'w_f-Z_p D_p^{-1}U_p\left( U_p'D_p^{-1}U_p\right)^{-1} U_f'w_f \right)\]

or

\[M w_f = RZ_p \delta \delta' \left( I+ Z_p' RZ_p \delta \delta'\right)^{-1} \left(Z_f'w_f-Z_p L w_f \right)\] \[R = D_p^{-1} - D_p^{-1} U_p\left(U_p'D_p^{-1}U_p \right)^{-1} U_p'D_p^{-1}\]

\(L, M \sim p \times f\) \(R \sim p \times p\)

Computation

  • $t_1= D_p^{-1} U_p$ $\sim p \times u$
  • $t_2=U_p’t_1 = U_p’ D_p^{-1} U_p$ $\sim u \times u$
  • $t_3=U_f’w_f$ $\sim u \times 1$
  • $t_4=t_2^{-1} t_3= \left(U_p’D_p^{-1}U_p \right)^{-1} U_f’ w_f$ $\sim u \times 1$
  • $t_5=t_1 t_4 =D_p^{-1} U_p \left(U_p’D_p^{-1}U_p \right)^{-1} U_f’ w_f$ $\sim p \times 1$
  • $t_6=t_1 t_2^{-1} t_1’=D_p^{-1} U_p\left(U_p’D_p^{-1}U_p \right)^{-1} U_p’ D_p^{-1}$ $\sim p \times p$
  • $R=D_p^{-1}-t_6$ $\sim p \times p$
  • $d_2=\delta \delta’$ $\sim z \times z$
  • $r_1=Z_p d_2=Z_p \delta \delta’$ $\sim p \times z$
  • $r_2=R r_1$ $\sim p \times z$
  • $r_3=Z_p’ r_2 = Z_p’R Z_p \delta \delta’$ $\sim z \times z$

Bibliography